Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mirror-Prox SCA Algorithm for Multicast Beamforming and Antenna Selection (1803.00678v1)

Published 2 Mar 2018 in cs.IT, math.IT, and math.OC

Abstract: This paper considers the (NP-)hard problem of joint multicast beamforming and antenna selection. Prior work has focused on using Semi-Definite relaxation (SDR) techniques in an attempt to obtain a high quality sub-optimal solution. However, SDR suffers from the drawback of having high computational complexity, as SDR lifts the problem to higher dimensional space, effectively squaring the number of variables. This paper proposes a high performance, low complexity Successive Convex Approximation (SCA) algorithm for max-min SNR "fair" joint multicast beamforming and antenna selection under a sum power constraint. The proposed approach relies on iteratively approximating the non-convex objective with a series of non-smooth convex subproblems, and then, a first order-based method called Saddle Point Mirror-Prox (SP-MP) is used to compute optimal solutions for each SCA subproblem. Simulations reveal that the SP-MP SCA algorithm provides a higher quality and lower complexity solution compared to the one obtained using SDR.

Citations (11)

Summary

We haven't generated a summary for this paper yet.