Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SD-CNN: a Shallow-Deep CNN for Improved Breast Cancer Diagnosis (1803.00663v2)

Published 1 Mar 2018 in cs.CV

Abstract: Breast cancer is the second leading cause of cancer death among women worldwide. Nevertheless, it is also one of the most treatable malignances if detected early. Screening for breast cancer with digital mammography (DM) has been widely used. However it demonstrates limited sensitivity for women with dense breasts. An emerging technology in the field is contrast-enhanced digital mammography (CEDM), which includes a low energy (LE) image similar to DM, and a recombined image leveraging tumor neoangiogenesis similar to breast magnetic resonance imaging (MRI). CEDM has shown better diagnostic accuracy than DM. While promising, CEDM is not yet widely available across medical centers. In this research, we propose a Shallow-Deep Convolutional Neural Network (SD-CNN) where a shallow CNN is developed to derive "virtual" recombined images from LE images, and a deep CNN is employed to extract novel features from LE, recombined or "virtual" recombined images for ensemble models to classify the cases as benign vs. cancer. To evaluate the validity of our approach, we first develop a deep-CNN using 49 CEDM cases collected from Mayo Clinic to prove the contributions from recombined images for improved breast cancer diagnosis (0.86 in accuracy using LE imaging vs. 0.90 in accuracy using both LE and recombined imaging). We then develop a shallow-CNN using the same 49 CEDM cases to learn the nonlinear mapping from LE to recombined images. Next, we use 69 DM cases collected from the hospital located at Zhejiang University, China to generate "virtual" recombined images. Using DM alone provides 0.91 in accuracy, whereas SD-CNN improves the diagnostic accuracy to 0.95.

Citations (156)

Summary

We haven't generated a summary for this paper yet.