Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Codes from surfaces with small Picard number (1803.00486v1)

Published 1 Mar 2018 in cs.IT, math.AG, and math.IT

Abstract: Extending work of M. Zarzar, we evaluate the potential of Goppa-type evaluation codes constructed from linear systems on projective algebraic surfaces with small Picard number. Putting this condition on the Picard number provides some control over the numbers of irreducible components of curves on the surface and hence over the minimum distance of the codes. We find that such surfaces do not automatically produce good codes; the sectional genus of the surface also has a major influence. Using that additional invariant, we derive bounds on the minimum distance under the assumption that the hyperplane section class generates the N\'eron-Severi group. We also give several examples of codes from such surfaces with minimum distance better than the best known bounds in Grassl's tables.

Citations (7)

Summary

We haven't generated a summary for this paper yet.