Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong subgraph $k$-connectivity bounds (1803.00281v1)

Published 1 Mar 2018 in cs.DM and math.CO

Abstract: Let $D=(V,A)$ be a digraph of order $n$, $S$ a subset of $V$ of size $k$ and $2\le k\leq n$. Strong subgraphs $D_1, \dots , D_p$ containing $S$ are said to be internally disjoint if $V(D_i)\cap V(D_j)=S$ and $A(D_i)\cap A(D_j)=\emptyset$ for all $1\le i<j\le p$. Let $\kappa_S(D)$ be the maximum number of internally disjoint strong digraphs containing $S$ in $D$. The strong subgraph $k$-connectivity is defined as $$\kappa_k(D)=\min{\kappa_S(D)\mid S\subseteq V, |S|=k}.$$ A digraph $D=(V, A)$ is called minimally strong subgraph $(k,\ell)$-connected if $\kappa_k(D)\geq \ell$ but for any arc $e\in A$, $\kappa_k(D-e)\leq \ell-1$. In this paper, we first give a sharp upper bound for the parameter $\kappa_k(D)$ and then study the minimally strong subgraph $(k,\ell)$-connected digraphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.