Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay (1803.00164v1)

Published 1 Mar 2018 in math.DS

Abstract: For delayed reaction-diffusion Schnakenberg systems with Neumann boundary conditions, critical conditions for Turing instability are derived, which are necessary and sufficient. And existence conditions for Turing, Hopf and Turing-Hopf bifurcations are established. Normal forms truncated to order 3 at Turing-Hopf singularity of codimension 2, are derived. By investigating Turing-Hopf bifurcation, the parameter regions for the stability of a periodic solution, a pair of spatially inhomogeneous steady states and a pair of spatially inhomogeneous periodic solutions, are derived in $(\tau,\varepsilon)$ parameter plane ($\tau$ for time delay, $\varepsilon$ for diffusion rate). It is revealed that joint effects of diffusion and delay can lead to the occurrence of mixed spatial and temporal patterns. Moreover, it is also demonstrated that various spatially inhomogeneous patterns with different spatial frequencies can be achieved via changing the diffusion rate. And, the phenomenon that time delay may induce a failure of Turing instability observed by Gaffney and Monk (2006) are theoretically explained.

Summary

We haven't generated a summary for this paper yet.