Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic topography of high-dimensional data sets by non-parametric Density Peak clustering (1802.10549v2)

Published 28 Feb 2018 in stat.ML and cs.LG

Abstract: Data analysis in high-dimensional spaces aims at obtaining a synthetic description of a data set, revealing its main structure and its salient features. We here introduce an approach providing this description in the form of a topography of the data, namely a human-readable chart of the probability density from which the data are harvested. The approach is based on an unsupervised extension of Density Peak clustering and a non-parametric density estimator that measures the probability density in the manifold containing the data. This allows finding automatically the number and the height of the peaks of the probability density, and the depth of the "valleys" separating them. Importantly, the density estimator provides a measure of the error, which allows distinguishing genuine density peaks from density fluctuations due to finite sampling. The approach thus provides robust and visual information about the density peaks' height, their statistical reliability, and their hierarchical organization, offering a conceptually powerful extension of the standard clustering partitions. We show that this framework is particularly useful in the analysis of complex data sets.

Citations (49)

Summary

We haven't generated a summary for this paper yet.