Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bioinformatics and Medicine in the Era of Deep Learning (1802.09791v1)

Published 27 Feb 2018 in cs.LG, q-bio.QM, and stat.ML

Abstract: Many of the current scientific advances in the life sciences have their origin in the intensive use of data for knowledge discovery. In no area this is so clear as in bioinformatics, led by technological breakthroughs in data acquisition technologies. It has been argued that bioinformatics could quickly become the field of research generating the largest data repositories, beating other data-intensive areas such as high-energy physics or astroinformatics. Over the last decade, deep learning has become a disruptive advance in machine learning, giving new live to the long-standing connectionist paradigm in artificial intelligence. Deep learning methods are ideally suited to large-scale data and, therefore, they should be ideally suited to knowledge discovery in bioinformatics and biomedicine at large. In this brief paper, we review key aspects of the application of deep learning in bioinformatics and medicine, drawing from the themes covered by the contributions to an ESANN 2018 special session devoted to this topic.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Davide Bacciu (107 papers)
  2. Paulo J. G. Lisboa (3 papers)
  3. José D. Martín (1 paper)
  4. Ruxandra Stoean (2 papers)
  5. Alfredo Vellido (5 papers)
Citations (17)