Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A foliated Hitchin-Kobayashi correspondence (1802.09699v1)

Published 27 Feb 2018 in math.DG and math.AG

Abstract: We prove an analogue of the Hitchin-Kobayashi correspondence for compact, oriented, taut Riemannian foliated manifolds with transverse Hermitian structure. In particular, our Hitchin-Kobayashi theorem holds on any compact Sasakian manifold. We define the notion of stability for foliated Hermitian vector bundles with transverse holomorphic structure and prove that such bundles admit a basic Hermitian-Einstein connection if and only if they are polystable. Our proof is obtained by adapting the proof by Uhlenbeck and Yau to the foliated setting. We relate the transverse Hermitian-Einstein equations to higher dimensional instanton equations and in particular we look at the relation to higher contact instantons on Sasaki manifolds. For foliations of complex codimension 1, we obtain a transverse Narasimhan-Seshadri theorem. We also demonstrate that the weak Uhlenbeck compactness theorem fails in general for basic connections on a foliated bundle. This shows that not every result in gauge theory carries over to the foliated setting.

Summary

We haven't generated a summary for this paper yet.