A foliated Hitchin-Kobayashi correspondence
Abstract: We prove an analogue of the Hitchin-Kobayashi correspondence for compact, oriented, taut Riemannian foliated manifolds with transverse Hermitian structure. In particular, our Hitchin-Kobayashi theorem holds on any compact Sasakian manifold. We define the notion of stability for foliated Hermitian vector bundles with transverse holomorphic structure and prove that such bundles admit a basic Hermitian-Einstein connection if and only if they are polystable. Our proof is obtained by adapting the proof by Uhlenbeck and Yau to the foliated setting. We relate the transverse Hermitian-Einstein equations to higher dimensional instanton equations and in particular we look at the relation to higher contact instantons on Sasaki manifolds. For foliations of complex codimension 1, we obtain a transverse Narasimhan-Seshadri theorem. We also demonstrate that the weak Uhlenbeck compactness theorem fails in general for basic connections on a foliated bundle. This shows that not every result in gauge theory carries over to the foliated setting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.