Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frequency domain TRINICON-based blind source separation method with multi-source activity detection for sparsely mixed signals (1802.09005v1)

Published 25 Feb 2018 in eess.AS and cs.SD

Abstract: The TRINICON ('Triple-N ICA for convolutive mixtures') framework is an effective blind signal separation (BSS) method for separating sound sources from convolutive mixtures. It makes full use of the non-whiteness, non-stationarity and non-Gaussianity properties of the source signals and can be implemented either in time domain or in frequency domain, avoiding the notorious internal permutation problem. It usually has best performance when the sources are continuously mixed. In this paper, the offline dual-channel frequency domain TRINICON implementation for sparsely mixed signals is investigated, and a multi-source activity detection is proposed to locate the active period of each source, based on which the filter updating strategy is regularized to improve the separation performance. The objective metric provided by the BSSEVAL toolkit is utilized to evaluate the performance of the proposed scheme.

Citations (2)

Summary

We haven't generated a summary for this paper yet.