Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling goal chances in soccer: a Bayesian inference approach (1802.08664v1)

Published 23 Feb 2018 in stat.AP

Abstract: We consider the task of determining the number of chances a soccer team creates, along with the composite nature of each chance-the players involved and the locations on the pitch of the assist and the chance. We propose an interpretable Bayesian inference approach and implement a Poisson model to capture chance occurrences, from which we infer team abilities. We then use a Gaussian mixture model to capture the areas on the pitch a player makes an assist/takes a chance. This approach allows the visualization of differences between players in the way they approach attacking play (making assists/taking chances). We apply the resulting scheme to the 2016/2017 English Premier League, capturing team abilities to create chances, before highlighting key areas where players have most impact.

Summary

We haven't generated a summary for this paper yet.