Papers
Topics
Authors
Recent
2000 character limit reached

p-Blocks Relative to a Character of a Normal Subgroup

Published 22 Feb 2018 in math.RT and math.GR | (1802.08174v1)

Abstract: Let G be a finite group, let N be a normal subgroup of G, and let theta in Irr(N) be a G-invariant character. We fix a prime p, and we introduce a canonical partition of Irr(G|theta) relative to p. We call each member B_theta of this partition a theta-block, and to each theta-block B_theta we naturally associate a conjugacy class of p-subgroups of G/N, which we call the theta-defect groups of B_theta. If N is trivial, then the theta-blocks are the Brauer p-blocks. Using theta-blocks, we can unify the Gluck-Wolf-Navarro-Tiep theorem and Brauer's Height Zero conjecture in a single statement, which, after work of B. Sambale, turns out to be equivalent to the the Height Zero conjecture. We also prove that the k(B)-conjecture is true if and only if every theta-block B_theta has size less than or equal the size of any of its theta-defect groups, hence bringing normal subgroups to the k(B)-conjecture.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.