Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Foundation for Finitary Corecursion and Iterative Algebras (1802.08070v3)

Published 21 Feb 2018 in cs.LO

Abstract: This paper contributes to a theory of the behaviour of "finite-state" systems that is generic in the system type. We propose that such systems are modelled as coalgebras with a finitely generated carrier for an endofunctor on a locally finitely presentable category. Their behaviour gives rise to a new fixpoint of the coalgebraic type functor called locally finite fixpoint (LFF). We prove that if the given endofunctor is finitary and preserves monomorphisms then the LFF always exists and is a subcoalgebra of the final coalgebra (unlike the rational fixpoint previously studied by Ad\'amek, Milius, and Velebil). Moreover, we show that the LFF is characterized by two universal properties: (1) as the final locally finitely generated coalgebra, and (2) as the initial fg-iterative algebra. As instances of the LFF we first obtain the known instances of the rational fixpoint, e.g. regular languages, rational streams and formal power-series, regular trees etc. Moreover, we obtain a number of new examples, e.g. (realtime deterministic resp. non-deterministic) context-free languages, constructively S-algebraic formal power-series (in general, the behaviour of finite coalgebras under the coalgebraic language semantics arising from the generalized powerset construction by Silva, Bonchi, Bonsangue, and Rutten), and the monad of Courcelle's algebraic trees.

Citations (11)

Summary

We haven't generated a summary for this paper yet.