Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Hyperedge Replacement Grammars for Graph Generation (1802.08068v2)

Published 21 Feb 2018 in cs.SI and cs.FL

Abstract: The discovery and analysis of network patterns are central to the scientific enterprise. In the present work, we developed and evaluated a new approach that learns the building blocks of graphs that can be used to understand and generate new realistic graphs. Our key insight is that a graph's clique tree encodes robust and precise information. We show that a Hyperedge Replacement Grammar (HRG) can be extracted from the clique tree, and we develop a fixed-size graph generation algorithm that can be used to produce new graphs of a specified size. In experiments on large real-world graphs, we show that graphs generated from the HRG approach exhibit a diverse range of properties that are similar to those found in the original networks. In addition to graph properties like degree or eigenvector centrality, what a graph "looks like" ultimately depends on small details in local graph substructures that are difficult to define at a global level. We show that the HRG model can also preserve these local substructures when generating new graphs.

Citations (14)

Summary

We haven't generated a summary for this paper yet.