Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Learning Based Approach for Uncertainty Analysis in Numerical Weather Prediction Models (1802.08055v1)

Published 20 Feb 2018 in cs.NA and physics.ao-ph

Abstract: Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions. This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors. Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Azam Moosavi (5 papers)
  2. Vishwas Rao (27 papers)
  3. Adrian Sandu (84 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.