Papers
Topics
Authors
Recent
2000 character limit reached

Asynchronous stochastic approximations with asymptotically biased errors and deep multi-agent learning

Published 22 Feb 2018 in math.OC, math.DS, and stat.ML | (1802.07935v2)

Abstract: Asynchronous stochastic approximations (SAs) are an important class of model-free algorithms, tools and techniques that are popular in multi-agent and distributed control scenarios. To counter Bellman's curse of dimensionality, such algorithms are coupled with function approximations. Although the learning/ control problem becomes more tractable, function approximations affect stability and convergence. In this paper, we present verifiable sufficient conditions for stability and convergence of asynchronous SAs with biased approximation errors. The theory developed herein is used to analyze Policy Gradient methods and noisy Value Iteration schemes. Specifically, we analyze the asynchronous approximate counterparts of the policy gradient (A2PG) and value iteration (A2VI) schemes. It is shown that the stability of these algorithms is unaffected by biased approximation errors, provided they are asymptotically bounded. With respect to convergence (of A2VI and A2PG), a relationship between the limiting set and the approximation errors is established. Finally, experimental results are presented that support the theory.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.