Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asynchronous stochastic approximations with asymptotically biased errors and deep multi-agent learning (1802.07935v2)

Published 22 Feb 2018 in math.OC, math.DS, and stat.ML

Abstract: Asynchronous stochastic approximations (SAs) are an important class of model-free algorithms, tools and techniques that are popular in multi-agent and distributed control scenarios. To counter BeLLMan's curse of dimensionality, such algorithms are coupled with function approximations. Although the learning/ control problem becomes more tractable, function approximations affect stability and convergence. In this paper, we present verifiable sufficient conditions for stability and convergence of asynchronous SAs with biased approximation errors. The theory developed herein is used to analyze Policy Gradient methods and noisy Value Iteration schemes. Specifically, we analyze the asynchronous approximate counterparts of the policy gradient (A2PG) and value iteration (A2VI) schemes. It is shown that the stability of these algorithms is unaffected by biased approximation errors, provided they are asymptotically bounded. With respect to convergence (of A2VI and A2PG), a relationship between the limiting set and the approximation errors is established. Finally, experimental results are presented that support the theory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.