Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Small, Densely Distributed Objects with Filter-Amplifier Networks and Loss Boosting (1802.07845v2)

Published 21 Feb 2018 in cs.CV

Abstract: Detecting small, densely distributed objects is a significant challenge: small objects often contain less distinctive information compared to larger ones, and finer-grained precision of bounding box boundaries are required. In this paper, we propose two techniques for addressing this problem. First, we estimate the likelihood that each pixel belongs to an object boundary rather than predicting coordinates of bounding boxes (as YOLO, Faster-RCNN and SSD do), by proposing a new architecture called Filter-Amplifier Networks (FANs). Second, we introduce a technique called Loss Boosting (LB) which attempts to soften the loss imbalance problem on each image. We test our algorithm on the problem of detecting electrical components on a new, realistic, diverse dataset of printed circuit boards (PCBs), as well as the problem of detecting vehicles in the Vehicle Detection in Aerial Imagery (VEDAI) dataset. Experiments show that our method works significantly better than current state-of-the-art algorithms with respect to accuracy, recall and average IoU.

Citations (4)

Summary

We haven't generated a summary for this paper yet.