Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational solutions to nonlinear stochastic differential equations in Hilbert spaces (1802.07533v1)

Published 21 Feb 2018 in math.PR

Abstract: One introduces a new variational concept of solution for the stochastic differential equation $dX+A(t)X\,dt+\lambda X\,dt=X\,dW,$ $t\in(0,T)$; $X(0)=x$ in a real Hilbert space where $A(t)=\partial\varphi(t)$, $t\in(0,T)$, is a maximal monotone subpotential operator in $H$ while $W$ is a Wiener process in $H$ on a probability space ${\Omega,\mathcal{F},\mathbb{P}}$. In this new context, the solution $X=X(t,x)$ exists for each $x\in H$, is unique, and depends continuously on $x$. This functional scheme applies to a general class of stochastic PDE not covered by the classical variational existence theory ([15], [16], [17]) and, in particular, to stochastic variational inequalities and parabolic stochastic equations with general monotone nonlinearities with low or superfast growth to $+\infty$.

Summary

We haven't generated a summary for this paper yet.