Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic Coreset for Scalable Learning of Monotonic Kernels: Logistic Regression, Sigmoid and more (1802.07382v3)

Published 21 Feb 2018 in cs.LG and cs.DS

Abstract: Coreset (or core-set) is a small weighted \emph{subset} $Q$ of an input set $P$ with respect to a given \emph{monotonic} function $f:\mathbb{R}\to\mathbb{R}$ that \emph{provably} approximates its fitting loss $\sum_{p\in P}f(p\cdot x)$ to \emph{any} given $x\in\mathbb{R}d$. Using $Q$ we can obtain approximation of $x*$ that minimizes this loss, by running \emph{existing} optimization algorithms on $Q$. In this work we provide: (i) A lower bound which proves that there are sets with no coresets smaller than $n=|P|$ for general monotonic loss functions. (ii) A proof that, under a natural assumption that holds e.g. for logistic regression and the sigmoid activation functions, a small coreset exists for \emph{any} input $P$. (iii) A generic coreset construction algorithm that computes such a small coreset $Q$ in $O(nd+n\log n)$ time, and (iv) Experimental results which demonstrate that our coresets are effective and are much smaller in practice than predicted in theory.

Citations (13)

Summary

We haven't generated a summary for this paper yet.