Papers
Topics
Authors
Recent
2000 character limit reached

Actively Avoiding Nonsense in Generative Models

Published 20 Feb 2018 in cs.LG, cs.DS, and stat.ML | (1802.07229v1)

Abstract: A generative model may generate utter nonsense when it is fit to maximize the likelihood of observed data. This happens due to "model error," i.e., when the true data generating distribution does not fit within the class of generative models being learned. To address this, we propose a model of active distribution learning using a binary invalidity oracle that identifies some examples as clearly invalid, together with random positive examples sampled from the true distribution. The goal is to maximize the likelihood of the positive examples subject to the constraint of (almost) never generating examples labeled invalid by the oracle. Guarantees are agnostic compared to a class of probability distributions. We show that, while proper learning often requires exponentially many queries to the invalidity oracle, improper distribution learning can be done using polynomially many queries.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.