Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusing Video and Inertial Sensor Data for Walking Person Identification (1802.07021v1)

Published 20 Feb 2018 in cs.CV

Abstract: An autonomous computer system (such as a robot) typically needs to identify, locate, and track persons appearing in its sight. However, most solutions have their limitations regarding efficiency, practicability, or environmental constraints. In this paper, we propose an effective and practical system which combines video and inertial sensors for person identification (PID). Persons who do different activities are easy to identify. To show the robustness and potential of our system, we propose a walking person identification (WPID) method to identify persons walking at the same time. By comparing features derived from both video and inertial sensor data, we can associate sensors in smartphones with human objects in videos. Results show that the correctly identified rate of our WPID method can up to 76% in 2 seconds.

Citations (1)

Summary

We haven't generated a summary for this paper yet.