Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized nil-Coxeter algebras (1802.07015v1)

Published 20 Feb 2018 in math.RA, math.CO, math.GR, and math.RT

Abstract: Motivated by work of Coxeter (1957), we study a class of algebras associated to Coxeter groups, which we term 'generalized nil-Coxeter algebras'. We construct the first finite-dimensional examples other than usual nil-Coxeter algebras; these form a $2$-parameter type $A$ family that we term $NC_A(n,d)$. We explore the combinatorial properties of these algebras, including the Coxeter word basis, length function, maximal words, and their connection to Khovanov's categorification of the Weyl algebra. Our broader motivation arises from complex reflection groups and the Broue-Malle-Rouquier freeness conjecture (1998). With generic Hecke algebras over real and complex groups in mind, we show that the 'first' finite-dimensional examples $NC_A(n,d)$ are in fact the only ones, outside of the usual nil-Coxeter algebras. The proofs use a diagrammatic calculus akin to crystal theory.

Summary

We haven't generated a summary for this paper yet.