Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Univariate and Bivariate Geometric Discrete Generalized Exponential Distributions (1802.06715v1)

Published 16 Feb 2018 in stat.ME, math.ST, stat.AP, and stat.TH

Abstract: Marshall and Olkin (1997, Biometrika, 84, 641 - 652) introduced a very powerful method to introduce an additional parameter to a class of continuous distribution functions and hence it brings more flexibility to the model. They have demonstrated their method for the exponential and Weibull classes. In the same paper they have briefly indicated regarding its bivariate extension. The main aim of this paper is to introduce the same method, for the first time, to the class of discrete generalized exponential distributions both for the univariate and bivariate cases. We investigate several properties of the proposed univariate and bivariate classes. The univariate class has three parameters, whereas the bivariate class has five parameters. It is observed that depending on the parameter values the univariate class can be both zero inflated as well as heavy tailed. We propose to use EM algorithm to estimate the unknown parameters. Small simulation experiments have been performed to see the effectiveness of the proposed EM algorithm, and a bivariate data set has been analyzed and it is observed that the proposed models and the EM algorithm work quite well in practice.

Summary

We haven't generated a summary for this paper yet.