Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Residual Network for Joint Demosaicing and Super-Resolution (1802.06573v1)

Published 19 Feb 2018 in cs.CV

Abstract: In digital photography, two image restoration tasks have been studied extensively and resolved independently: demosaicing and super-resolution. Both these tasks are related to resolution limitations of the camera. Performing super-resolution on a demosaiced images simply exacerbates the artifacts introduced by demosaicing. In this paper, we show that such accumulation of errors can be easily averted by jointly performing demosaicing and super-resolution. To this end, we propose a deep residual network for learning an end-to-end mapping between Bayer images and high-resolution images. By training on high-quality samples, our deep residual demosaicing and super-resolution network is able to recover high-quality super-resolved images from low-resolution Bayer mosaics in a single step without producing the artifacts common to such processing when the two operations are done separately. We perform extensive experiments to show that our deep residual network achieves demosaiced and super-resolved images that are superior to the state-of-the-art both qualitatively and in terms of PSNR and SSIM metrics.

Citations (40)

Summary

We haven't generated a summary for this paper yet.