Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heuristic Based Induction of Answer Set Programs: From Default theories to combinatorial problems (1802.06462v1)

Published 18 Feb 2018 in cs.LO

Abstract: Significant research has been conducted in recent years to extend Inductive Logic Programming (ILP) methods to induce Answer Set Programs (ASP). These methods perform an exhaustive search for the correct hypothesis by encoding an ILP problem instance as an ASP program. Exhaustive search, however, results in loss of scalability. In addition, the language bias employed in these methods is overly restrictive too. In this paper we extend our previous work on learning stratified answer set programs that have a single stable model to learning arbitrary (i.e., non-stratified) ones with multiple stable models. Our extended algorithm is a greedy FOIL-like algorithm, capable of inducing non-monotonic logic programs, examples of which includes programs for combinatorial problems such as graph-coloring and N-queens. To the best of our knowledge, this is the first heuristic-based ILP algorithm to induce answer set programs with multiple stable models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Farhad Shakerin (13 papers)
  2. Gopal Gupta (58 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.