Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric ergodicity of Polya-Gamma Gibbs sampler for Bayesian logistic regression with a flat prior (1802.06248v3)

Published 17 Feb 2018 in math.ST and stat.TH

Abstract: The logistic regression model is the most popular model for analyzing binary data. In the absence of any prior information, an improper flat prior is often used for the regression coefficients in Bayesian logistic regression models. The resulting intractable posterior density can be explored by running Polson et al.'s (2013) data augmentation (DA) algorithm. In this paper, we establish that the Markov chain underlying Polson et al.'s (2013) DA algorithm is geometrically ergodic. Proving this theoretical result is practically important as it ensures the existence of central limit theorems (CLTs) for sample averages under a finite second moment condition. The CLT in turn allows users of the DA algorithm to calculate standard errors for posterior estimates.

Summary

We haven't generated a summary for this paper yet.