Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Single Sample Tests for Structured versus Unstructured Network Data

Published 17 Feb 2018 in math.ST, cs.LG, math.PR, and stat.TH | (1802.06186v2)

Abstract: We study the problem of testing, using only a single sample, between mean field distributions (like Curie-Weiss, Erd\H{o}s-R\'enyi) and structured Gibbs distributions (like Ising model on sparse graphs and Exponential Random Graphs). Our goal is to test without knowing the parameter values of the underlying models: only the \emph{structure} of dependencies is known. We develop a new approach that applies to both the Ising and Exponential Random Graph settings based on a general and natural statistical test. The test can distinguish the hypotheses with high probability above a certain threshold in the (inverse) temperature parameter, and is optimal in that below the threshold no test can distinguish the hypotheses. The thresholds do not correspond to the presence of long-range order in the models. By aggregating information at a global scale, our test works even at very high temperatures. The proofs are based on distributional approximation and sharp concentration of quadratic forms, when restricted to Hamming spheres. The restriction to Hamming spheres is necessary, since otherwise any scalar statistic is useless without explicit knowledge of the temperature parameter. At the same time, this restriction radically changes the behavior of the functions under consideration, resulting in a much smaller variance than in the independent setting; this makes it hard to directly apply standard methods (i.e., Stein's method) for concentration of weakly dependent variables. Instead, we carry out an additional tensorization argument using a Markov chain that respects the symmetry of the Hamming sphere.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.