Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instance-based Inductive Deep Transfer Learning by Cross-Dataset Querying with Locality Sensitive Hashing (1802.05934v1)

Published 16 Feb 2018 in cs.CL

Abstract: Supervised learning models are typically trained on a single dataset and the performance of these models rely heavily on the size of the dataset, i.e., amount of data available with the ground truth. Learning algorithms try to generalize solely based on the data that is presented with during the training. In this work, we propose an inductive transfer learning method that can augment learning models by infusing similar instances from different learning tasks in the NLP domain. We propose to use instance representations from a source dataset, \textit{without inheriting anything} from the source learning model. Representations of the instances of \textit{source} & \textit{target} datasets are learned, retrieval of relevant source instances is performed using soft-attention mechanism and \textit{locality sensitive hashing}, and then, augmented into the model during training on the target dataset. Our approach simultaneously exploits the local \textit{instance level information} as well as the macro statistical viewpoint of the dataset. Using this approach we have shown significant improvements for three major news classification datasets over the baseline. Experimental evaluations also show that the proposed approach reduces dependency on labeled data by a significant margin for comparable performance. With our proposed cross dataset learning procedure we show that one can achieve competitive/better performance than learning from a single dataset.

Citations (10)

Summary

We haven't generated a summary for this paper yet.