Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subordination for sequentially equicontinuous equibounded $C_0$-semigroups (1802.05059v3)

Published 14 Feb 2018 in math.FA

Abstract: We consider operators $A$ on a sequentially complete Hausdorff locally convex space $X$ such that $-A$ generates a (sequentially) equicontinuous equibounded $C_0$-semigroup. For every Bernstein function $f$ we show that $-f(A)$ generates a semigroup which is of the same `kind' as the one generated by $-A$. As a special case we obtain that fractional powers $-A{\alpha}$, where $\alpha \in (0,1)$, are generators.

Summary

We haven't generated a summary for this paper yet.