Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilevel nested simulation for efficient risk estimation (1802.05016v2)

Published 14 Feb 2018 in q-fin.CP and math.PR

Abstract: We investigate the problem of computing a nested expectation of the form $\mathbb{P}[\mathbb{E}[X|Y] !\geq!0]!=!\mathbb{E}[\textrm{H}(\mathbb{E}[X|Y])]$ where $\textrm{H}$ is the Heaviside function. This nested expectation appears, for example, when estimating the probability of a large loss from a financial portfolio. We present a method that combines the idea of using Multilevel Monte Carlo (MLMC) for nested expectations with the idea of adaptively selecting the number of samples in the approximation of the inner expectation, as proposed by (Broadie et al., 2011). We propose and analyse an algorithm that adaptively selects the number of inner samples on each MLMC level and prove that the resulting MLMC method with adaptive sampling has an $\mathcal{O}\left( \varepsilon{-2}|\log\varepsilon|2 \right)$ complexity to achieve a root mean-squared error $\varepsilon$. The theoretical analysis is verified by numerical experiments on a simple model problem. We also present a stochastic root-finding algorithm that, combined with our adaptive methods, can be used to compute other risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), with the latter being achieved with $\mathcal{O}\left(\varepsilon{-2}\right)$ complexity.

Summary

We haven't generated a summary for this paper yet.