Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations (1802.04385v1)

Published 12 Feb 2018 in cs.NA and cs.MS

Abstract: Floating point error is a drawback of embedded systems implementation that is difficult to avoid. Computing rigorous upper bounds of roundoff errors is absolutely necessary for the validation of critical software. This problem of computing rigorous upper bounds is even more challenging when addressing non-linear programs. In this paper, we propose and compare two new algorithms based on Bernstein expansions and sparse Krivine-Stengle representations, adapted from the field of the global optimization, to compute upper bounds of roundoff errors for programs implementing polynomial and rational functions. We also provide the convergence rate of these two algorithms. We release two related software package FPBern and FPKriSten, and compare them with the state-of-the-art tools. We show that these two methods achieve competitive performance, while providing accurate upper bounds by comparison with the other tools.

Citations (1)

Summary

We haven't generated a summary for this paper yet.