Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Interactive Image Retrieval using large-scale unlabeled data (1802.04204v1)

Published 12 Feb 2018 in cs.LG and stat.ML

Abstract: An interactive image retrieval system learns which images in the database belong to a user's query concept, by analyzing the example images and feedback provided by the user. The challenge is to retrieve the relevant images with minimal user interaction. In this work, we propose to solve this problem by posing it as a binary classification task of classifying all images in the database as being relevant or irrelevant to the user's query concept. Our method combines active learning with graph-based semi-supervised learning (GSSL) to tackle this problem. Active learning reduces the number of user interactions by querying the labels of the most informative points and GSSL allows to use abundant unlabeled data along with the limited labeled data provided by the user. To efficiently find the most informative point, we use an uncertainty sampling based method that queries the label of the point nearest to the decision boundary of the classifier. We estimate this decision boundary using our heuristic of adaptive threshold. To utilize huge volumes of unlabeled data we use an efficient approximation based method that reduces the complexity of GSSL from $O(n3)$ to $O(n)$, making GSSL scalable. We make the classifier robust to the diversity and noisy labels associated with images in large databases by incorporating information from multiple modalities such as visual information extracted from deep learning based models and semantic information extracted from the WordNet. High F1 scores within few relevance feedback rounds in our experiments with concepts defined on AnimalWithAttributes and Imagenet (1.2 million images) datasets indicate the effectiveness and scalability of our approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.