Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Architecture for Personalized Healthcare Service Recommendation using Big Data Lake (1802.04105v1)

Published 2 Feb 2018 in cs.CY

Abstract: The personalized health care service utilizes the relational patient data and big data analytics to tailor the medication recommendations. However, most of the health care data are in unstructured form and it consumes a lot of time and effort to pull them into relational form. This study proposes a novel data lake architecture to reduce the data ingestion time and improve the precision of healthcare analytics. It also removes the data silos and enhances the analytics by allowing the connectivity to the third-party data providers (such as clinical lab results, chemist, insurance company,etc.). The data lake architecture uses the Hadoop Distributed File System (HDFS) to provide the storage for both structured and unstructured data. This study uses K-means clustering algorithm to find the patient clusters with similar health conditions. Subsequently, it employs a support vector machine to find the most successful healthcare recommendations for the each cluster. Our experiment results demonstrate the ability of data lake to reduce the time for ingesting data from various data vendors regardless of its format. Moreover, it is evident that the data lake poses the potential to generate clusters of patients more precisely than the existing approaches. It is obvious that the data lake provides a unified storage location for the data in its native format. It can also improve the personalized healthcare medication recommendations by removing the data silos.

Citations (20)

Summary

We haven't generated a summary for this paper yet.