Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visualizing Neural Network Developing Perturbation Theory (1802.03930v2)

Published 12 Feb 2018 in physics.comp-ph, cond-mat.dis-nn, cond-mat.quant-gas, cs.AI, and cs.LG

Abstract: In this letter, motivated by the question that whether the empirical fitting of data by neural network can yield the same structure of physical laws, we apply the neural network to a simple quantum mechanical two-body scattering problem with short-range potentials, which by itself also plays an important role in many branches of physics. We train a neural network to accurately predict $ s $-wave scattering length, which governs the low-energy scattering physics, directly from the scattering potential without solving Schr\"odinger equation or obtaining the wavefunction. After analyzing the neural network, it is shown that the neural network develops perturbation theory order by order when the potential increases. This provides an important benchmark to the machine-assisted physics research or even automated machine learning physics laws.

Citations (8)

Summary

We haven't generated a summary for this paper yet.