Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QRkit: Sparse, Composable QR Decompositions for Efficient and Stable Solutions to Problems in Computer Vision (1802.03773v1)

Published 11 Feb 2018 in cs.NA and cs.MS

Abstract: Embedded computer vision applications increasingly require the speed and power benefits of single-precision (32 bit) floating point. However, applications which make use of Levenberg-like optimization can lose significant accuracy when reducing to single precision, sometimes unrecoverably so. This accuracy can be regained using solvers based on QR rather than Cholesky decomposition, but the absence of sparse QR solvers for common sparsity patterns found in computer vision means that many applications cannot benefit. We introduce an open-source suite of solvers for Eigen, which efficiently compute the QR decomposition for matrices with some common sparsity patterns (block diagonal, horizontal and vertical concatenation, and banded). For problems with very particular sparsity structures, these elements can be composed together in 'kit' form, hence the name QRkit. We apply our methods to several computer vision problems, showing competitive performance and suitability especially in single precision arithmetic.

Citations (3)

Summary

We haven't generated a summary for this paper yet.