Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ball Prolate Spheroidal Wave Functions In Arbitrary Dimensions (1802.03684v1)

Published 11 Feb 2018 in math.NA

Abstract: In this paper, we introduce the prolate spheroidal wave functions (PSWFs) of real order $\alpha>-1$ on the unit ball in arbitrary dimension, termed as ball PSWFs. They are eigenfunctions of both a weighted concentration integral operator, and a Sturm-Liouville differential operator. Different from existing works on multi-dimensional PSWFs, the ball PSWFs are defined as a generalisation of orthogonal {\em ball polynomials} in primitive variables with a tuning parameter $c>0$, through a "perturbation" of the Sturm-Liouville equation of the ball polynomials. From this perspective, we can explore some interesting intrinsic connections between the ball PSWFs and the finite Fourier and Hankel transforms. We provide an efficient and accurate algorithm for computing the ball PSWFs and the associated eigenvalues, and present various numerical results to illustrate the efficiency of the method. Under this uniform framework, we can recover the existing PSWFs by suitable variable substitutions.

Summary

We haven't generated a summary for this paper yet.