On Weak Supercyclicity II
Abstract: This paper considers weak supercyclicity for bounded linear operators on a normed space. On the one hand, weak supercyclicity is investigated for classes of Hilbert-space operators: (i) self-adjoint operators are not weakly supercyclic, (ii) diagonalizable operators are not weakly l-sequentially supercyclic, and (iii) weak l-sequential supercyclicity is preserved between a unitary operator and its adjoint. On the other hand, weak supercyclicity is investigated for classes of normed-space operators: (iv) the point spectrum of the normed-space adjoint of a power bounded supercyclic operator is either empty or is a singleton in the open unit disk, (v) weak l-sequential supercyclicity coincides with supercyclicity for compact operators, and (vi) every compact weakly l-sequentially supercyclic operator is quasinilpotent.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.