Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the linear independence of a class of series of functions (1802.03377v4)

Published 9 Feb 2018 in math.NT and math.CV

Abstract: For $k\in\mathbb R$, we consider a $\mathbb C$-algebra $\mathcal A_k$ of holomorphic functions in the half plane $Re\; z>k$ with (at most) subexponential growth on the real line to $+\infty$. In the $\mathcal A_k$-algebra of sequences of functions ${\alpha:\mathbb N\rightarrow \mathcal A_k}$, we consider the $\mathcal A_k$-subalgebra $\mathcal H_k$ consisting in those $\alpha$ for which there exists a continuous map $M:{Re\; z>k}\rightarrow [0,+\infty)$ such that $|\alpha(n)(z)|\leq M(z)nk$ for all $Re\; z>k,n\geq 1$, and $\lim_{x\rightarrow +\infty}e{-ax}M(x)=0$, for all $a>0$. Given $L$ a sequence of holomorphic functions on $Re\; z>k$ which satisfies certain conditions, we prove that the map $\alpha\mapsto F_L(\alpha)$, where $F_L(\alpha):=\sum_{n=1}{+\infty}\alpha(n)(z)L(n)(z)$, is an injective morphism of $\mathcal A_k$-modules (or $\mathcal A_k$-algebras). Consequently, if $n\mapsto \alpha_j(n)(z)\in\mathbb C$, $1\leq j\leq r$, are linearly (algebraically) independent over $\mathbb C$, for $z$ in a nondiscrete subset of $Re\; z>k$, then $F_{\alpha_1},\ldots,F_{\alpha_r}$ are linearly (algebraically) independent over the quotient field of $\mathcal A_k$.

Summary

We haven't generated a summary for this paper yet.