Papers
Topics
Authors
Recent
2000 character limit reached

Topological Hochschild homology and integral $p$-adic Hodge theory

Published 9 Feb 2018 in math.AG, math.KT, and math.NT | (1802.03261v2)

Abstract: In mixed characteristic and in equal characteristic $p$ we define a filtration on topological Hochschild homology and its variants. This filtration is an analogue of the filtration of algebraic $K$-theory by motivic cohomology. Its graded pieces are related in mixed characteristic to the complex $A\Omega$ constructed in our previous work, and in equal characteristic $p$ to crystalline cohomology. Our construction of the filtration on $\mathrm{THH}$ is via flat descent to semiperfectoid rings. As one application, we refine the construction of the $A\Omega$-complex by giving a cohomological construction of Breuil--Kisin modules for proper smooth formal schemes over $\mathcal O_K$, where $K$ is a discretely valued extension of $\mathbb Q_p$ with perfect residue field. As another application, we define syntomic sheaves $\mathbb Z_p(n)$ for all $n\geq 0$ on a large class of $\mathbb Z_p$-algebras, and identify them in terms of $p$-adic nearby cycles in mixed characteristic, and in terms of logarithmic de~Rham-Witt sheaves in equal characteristic $p$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.