Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parametric inference for hypoelliptic ergodic diffusions with full observations (1802.02943v3)

Published 8 Feb 2018 in math.PR, math.ST, and stat.TH

Abstract: Multidimensional hypoelliptic diffusions arise naturally in different fields, for example to model neuronal activity. Estimation in those models is complex because of the degenerate structure of the diffusion coefficient. In this paper we consider hypoelliptic diffusions, given as a solution of two-dimensional stochastic differential equations (SDEs), with the discrete time observations of both coordinates being available on an interval $T = n\Delta_n$, with $\Delta_n$ the time step between the observations. The estimation is studied in the asymptotic setting, with $T\to\infty$ as $\Delta_n\to 0$. We build a consistent estimator of the drift and variance parameters with the help of a discretized log-likelihood of the continuous process. We discuss the difficulties generated by the hypoellipticity and provide a proof of the consistency and the asymptotic normality of the estimator. We test our approach numerically on the hypoelliptic FitzHugh-Nagumo model, which describes the firing mechanism of a neuron.

Summary

We haven't generated a summary for this paper yet.