Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cyclicity and indecomposability in the Brauer group of a $p$-adic curve (1802.02322v2)

Published 7 Feb 2018 in math.RA

Abstract: For a $p$-adic curve $X$, we study conditions under which all classes in the $n$-torsion of $Br(X)$ are $\mathbb{Z}/n$-cyclic. We show that in general not all classes are $\mathbb{Z}/n$-cyclic classes. On the other hand, if $X$ has good reduction and $n$ is prime to $p$, of if $X$ is an elliptic curve over $\mathbb{Q}_p$ with split multiplicative reduction and $n$ is a power of $p$, then we prove that all order $n$ elements of $Br(X)$ are $\mathbb{Z}/n$-cyclic. Finally, if $X$ has good reduction and its function field $K(X)$ contains all $p2$-th roots of $1$, we show the existence of indecomposable division algebras over $K(X)$ with period $p2$ and index $p3$.

Summary

We haven't generated a summary for this paper yet.