Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LightNN: Filling the Gap between Conventional Deep Neural Networks and Binarized Networks (1802.02178v1)

Published 2 Dec 2017 in cs.NE

Abstract: Application-specific integrated circuit (ASIC) implementations for Deep Neural Networks (DNNs) have been adopted in many systems because of their higher classification speed. However, although they may be characterized by better accuracy, larger DNNs require significant energy and area, thereby limiting their wide adoption. The energy consumption of DNNs is driven by both memory accesses and computation. Binarized Neural Networks (BNNs), as a trade-off between accuracy and energy consumption, can achieve great energy reduction, and have good accuracy for large DNNs due to its regularization effect. However, BNNs show poor accuracy when a smaller DNN configuration is adopted. In this paper, we propose a new DNN model, LightNN, which replaces the multiplications to one shift or a constrained number of shifts and adds. For a fixed DNN configuration, LightNNs have better accuracy at a slight energy increase than BNNs, yet are more energy efficient with only slightly less accuracy than conventional DNNs. Therefore, LightNNs provide more options for hardware designers to make trade-offs between accuracy and energy. Moreover, for large DNN configurations, LightNNs have a regularization effect, making them better in accuracy than conventional DNNs. These conclusions are verified by experiment using the MNIST and CIFAR-10 datasets for different DNN configurations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ruizhou Ding (13 papers)
  2. Zeye Liu (3 papers)
  3. Rongye Shi (12 papers)
  4. Diana Marculescu (64 papers)
  5. R. D. Blanton (1 paper)
Citations (37)

Summary

We haven't generated a summary for this paper yet.