Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiplicativity of the idempotent splittings of the Burnside ring and the G-sphere spectrum (1802.01938v3)

Published 6 Feb 2018 in math.AT and math.GR

Abstract: We provide a complete characterization of the equivariant commutative ring structures of all the factors in the idempotent splitting of the G-equivariant sphere spectrum, including their Hill-Hopkins-Ravenel norms, where G is any finite group. Our results describe explicitly how these structures depend on the subgroup lattice and conjugation in G. Algebraically, our analysis characterizes the multiplicative transfers on the localization of the Burnside ring of G at any idempotent element, which is of independent interest to group theorists. As an application, we obtain an explicit description of the incomplete sets of norm functors which are present in the idempotent splitting of the equivariant stable homotopy category.

Summary

We haven't generated a summary for this paper yet.