Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Coresets of Kernel Density Estimates (1802.01751v5)

Published 6 Feb 2018 in cs.LG, cs.CG, and stat.ML

Abstract: We construct near-optimal coresets for kernel density estimates for points in $\mathbb{R}d$ when the kernel is positive definite. Specifically we show a polynomial time construction for a coreset of size $O(\sqrt{d}/\varepsilon\cdot \sqrt{\log 1/\varepsilon} )$, and we show a near-matching lower bound of size $\Omega(\min{\sqrt{d}/\varepsilon, 1/\varepsilon2})$. When $d\geq 1/\varepsilon2$, it is known that the size of coreset can be $O(1/\varepsilon2)$. The upper bound is a polynomial-in-$(1/\varepsilon)$ improvement when $d \in [3,1/\varepsilon2)$ and the lower bound is the first known lower bound to depend on $d$ for this problem. Moreover, the upper bound restriction that the kernel is positive definite is significant in that it applies to a wide-variety of kernels, specifically those most important for machine learning. This includes kernels for information distances and the sinc kernel which can be negative.

Citations (70)

Summary

We haven't generated a summary for this paper yet.