Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The McKay correspondence for isolated singularities via Floer theory (1802.01534v3)

Published 5 Feb 2018 in math.SG and math.AG

Abstract: We prove the generalised McKay correspondence for isolated singularities using Floer theory. Given an isolated singularity \Cn/G for a finite subgroup G in SL(n,\C) and any crepant resolution Y, we prove that the rank of positive symplectic cohomology SH_+(Y) is the number of conjugacy classes of G, and that twice the age grading on conjugacy classes is the \Z-grading on SH_+(Y) by the Conley-Zehnder index. The generalised McKay correspondence follows as SH_+(Y) is naturally isomorphic to ordinary cohomology H(Y), due to a vanishing result for full symplectic cohomology. In the Appendix we construct a novel filtration on the symplectic chain complex for any non-exact convex symplectic manifold, which yields both a Morse-Bott spectral sequence and a construction of positive symplectic cohomology.

Summary

We haven't generated a summary for this paper yet.