Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase retrieval with background information (1802.01256v1)

Published 5 Feb 2018 in cs.IT and math.IT

Abstract: Phase retrieval problem has been studied in various applications. It is an inverse problem without the standard uniqueness guarantee. To make complete theoretical analyses and devise efficient algorithms to recover the signal is sophisticated. In this paper, we come up with a model called \textit{phase retrieval with background information} which recovers the signal with the known background information from the intensity of their combinational Fourier transform spectrum. We prove that the uniqueness of phase retrieval can be guaranteed even considering those trivial solutions when the background information is sufficient. Under this condition, we construct a loss function and utilize the projected gradient descent method to search for the ground truth. We prove that the stationary point is the global optimum with probability 1. Numerical simulations demonstrate the projected gradient descent method performs well both for 1-D and 2-D signals. Furthermore, this method is quite robust to the Gaussian noise and the bias of the background information.

Citations (16)

Summary

We haven't generated a summary for this paper yet.