Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Adversarially Learned Inference (1802.01071v1)

Published 4 Feb 2018 in stat.ML and cs.LG

Abstract: We propose a novel hierarchical generative model with a simple Markovian structure and a corresponding inference model. Both the generative and inference model are trained using the adversarial learning paradigm. We demonstrate that the hierarchical structure supports the learning of progressively more abstract representations as well as providing semantically meaningful reconstructions with different levels of fidelity. Furthermore, we show that minimizing the Jensen-Shanon divergence between the generative and inference network is enough to minimize the reconstruction error. The resulting semantically meaningful hierarchical latent structure discovery is exemplified on the CelebA dataset. There, we show that the features learned by our model in an unsupervised way outperform the best handcrafted features. Furthermore, the extracted features remain competitive when compared to several recent deep supervised approaches on an attribute prediction task on CelebA. Finally, we leverage the model's inference network to achieve state-of-the-art performance on a semi-supervised variant of the MNIST digit classification task.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com