Papers
Topics
Authors
Recent
Search
2000 character limit reached

Projections of the Aldous chain on binary trees: Intertwining and consistency

Published 2 Feb 2018 in math.PR | (1802.00862v1)

Abstract: Consider the Aldous Markov chain on the space of rooted binary trees with $n$ labeled leaves in which at each transition a uniform random leaf is deleted and reattached to a uniform random edge. Now, fix $1\le k < n$ and project the leaf mass onto the subtree spanned by the first $k$ leaves. This yields a binary tree with edge weights that we call a "decorated $k$-tree with total mass $n$." We introduce label swapping dynamics for the Aldous chain so that, when it runs in stationarity, the decorated $k$-trees evolve as Markov chains themselves, and are projectively consistent over $k\le n$. The construction of projectively consistent chains is a crucial step in the construction of the Aldous diffusion on continuum trees by the present authors, which is the $n\rightarrow \infty$ continuum analogue of the Aldous chain and will be taken up elsewhere. Some of our results have been generalized to Ford's alpha model trees.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.