Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Deep Convolutional Neural Networks via Meta-learning (1802.00560v2)

Published 2 Feb 2018 in cs.LG, cs.AI, and stat.ML

Abstract: Model interpretability is a requirement in many applications in which crucial decisions are made by users relying on a model's outputs. The recent movement for "algorithmic fairness" also stipulates explainability, and therefore interpretability of learning models. And yet the most successful contemporary Machine Learning approaches, the Deep Neural Networks, produce models that are highly non-interpretable. We attempt to address this challenge by proposing a technique called CNN-INTE to interpret deep Convolutional Neural Networks (CNN) via meta-learning. In this work, we interpret a specific hidden layer of the deep CNN model on the MNIST image dataset. We use a clustering algorithm in a two-level structure to find the meta-level training data and Random Forest as base learning algorithms to generate the meta-level test data. The interpretation results are displayed visually via diagrams, which clearly indicates how a specific test instance is classified. Our method achieves global interpretation for all the test instances without sacrificing the accuracy obtained by the original deep CNN model. This means our model is faithful to the deep CNN model, which leads to reliable interpretations.

Citations (37)

Summary

We haven't generated a summary for this paper yet.