Fermion-induced quantum criticality with two length scales in Dirac systems
Abstract: The quantum phase transition to a $\mathbb{Z}_3$-ordered Kekul\'e valence bond solid in two-dimensional Dirac semimetals is governed by a fermion-induced quantum critical point, which renders the putatively discontinuous transition continuous. We study the resulting universal critical behavior in terms of a functional RG approach, which gives access to the scaling behavior on the symmetry-broken side of the phase transition, for general dimension and number of Dirac fermions. In particular, we investigate the emergence of the fermion-induced quantum critical point for space-time dimensions $2<d<4$. We determine the integrated RG flow from the Dirac semi-metal to the symmetry-broken regime and analyze the underlying fixed point structure. We show that the fermion-induced criticality leads to a scaling form with two divergent length scales, due to the breaking of the discrete $\mathbb{Z}_3$ symmetry. This provides another source of scaling corrections, besides the one stemming from being in the proximity to the first order transition.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.