Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A CNN-based Spatial Feature Fusion Algorithm for Hyperspectral Imagery Classification (1801.10355v2)

Published 31 Jan 2018 in cs.CV

Abstract: The shortage of training samples remains one of the main obstacles in applying the artificial neural networks (ANN) to the hyperspectral images classification. To fuse the spatial and spectral information, pixel patches are often utilized to train a model, which may further aggregate this problem. In the existing works, an ANN model supervised by center-loss (ANNC) was introduced. Training merely with spectral information, the ANNC yields discriminative spectral features suitable for the subsequent classification tasks. In this paper, a CNN-based spatial feature fusion (CSFF) algorithm is proposed, which allows a smart fusion of the spatial information to the spectral features extracted by ANNC. As a critical part of CSFF, a CNN-based discriminant model is introduced to estimate whether two paring pixels belong to the same class. At the testing stage, by applying the discriminant model to the pixel-pairs generated by the test pixel and its neighbors, the local structure is estimated and represented as a customized convolutional kernel. The spectral-spatial feature is obtained by a convolutional operation between the estimated kernel and the corresponding spectral features within a neighborhood. At last, the label of the test pixel is predicted by classifying the resulting spectral-spatial feature. Without increasing the number of training samples or involving pixel patches at the training stage, the CSFF framework achieves the state-of-the-art by declining $20\%-50\%$ classification failures in experiments on three well-known hyperspectral images.

Citations (32)

Summary

We haven't generated a summary for this paper yet.